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SUMMARY 
This paper presents an efficient finite element method for solving the unsteady Navier-Stokes equations for 
turbulent incompressible flow coupled with thermal problems. This method has been implemented in the 
N3S code, developed at Electricite de France. The time discretization is first described. We precise then the 
Chorin and the ‘projected Uzawa’ algorithms used for the Stokes problem. Recent improvements concerning 
the optimization of finite element calculations are also detailed. The second part deals with the modelling of 
the thermal boundary layer used to simulate walls with fixed temperature in turbulent flows. The differences 
with other modelling suggested in the literature are discussed. The last part presents some applications. EDF 
is involved in the conception of heating or cooling systems and numerical methods constitute a very useful 
tool to study the movements of air in habitations. The calculations are validated by comparisons with 
measurements. 
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1.  INTRODUCTION 

Air movements in heated or cooled rooms raise a great challenge for numerical methods. A finite 
element approach is suggested in this paper to solve the Navier-Stokes equations coupled with 
buoyancy forces. The turbulent effects, quite important for the representation of the heat transfer, 
are taken into account with a classical k--E model. Four typical configurations of mixed convec- 
tion flows in enclosures representative of ventilation and heating problems were computed. 
Bidimensional simulations have been successfully compared with experimental results: the 
velocity sfield simulated is in good agreement with experiments, a slightly less accuracy on the 
temperature field has been noticed for particular configurations. An appropriate modelling of the 
turbulent thermal boundary layer is expected. The formulation adopted, based on a classical wall 
laws, is presented in the first part of this paper. 

This study has been achieved to qualify the finite element (FE) code N3S developed by the 
‘Direction des Etudes et Recherches’ of Electricite’ de France for simulating turbulent incompress- 
ible’ and dilatable’ flows. N3S is nowadays used for many industrial applications (internal 
flows’, thermal problems3, t~rbomachinery~). These applications are more and more important 
(calculation until 370 OOO nodes and 1 800 000 unknowns), so an important work has been done to 
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improve the release 3.1 of the code in terms of CPU time and memory allocation on super 
computers as CRAY Y-MP. A specific algorithm has also been developed to solve the Stokes 
problem in such different configurations: the projected Uzawa/Chorin algorithm. 

2. MODELLING OF THE THERMAL BOUNDARY LAYER 

2.1. The boundary conditions 

The flows studied with thermohydraulic codes are usually bounded by walls. The modelling of 
the turbulence and the heat transfer in the vicinity of these walls is quite difficult. Many solutions 
are suggested in the literature. The turbulent effects in the core of the flow are taken into account 
in N3S by a k--E model and the different solutions to simulate the turbulent boundary layer can be 
divided into two groups. First, the most sophisticated methods, like the low-Reynolds models,’ 
compute all the gradients in the boundary layer considering the physically correct no slip 
condition. These methods are the most accurate but require very thin meshes in the wall area and 
the number of nodes becomes quickly far too high for industrial calculations. The other classical 
ways to simulate the boundary layers are the wall that is, rather than apply the no slip 
condition at the wall, the modelling of the turbulent boundary layer supply the shear stress 
t,(t, = pu:) at a given distance from the wall ho(ho is small compared to the characteristic size of 
the mesh at the wall). So as far as the finite element discretization is concerned, the numerical 
boundary is not actually on the wall but fictitiously shifted inside the domain at  the distance h0 
where the shear stresses are evaluated. This method does not require any great refinement in the 
wall area. 

On a thermal point of view, different kinds of boundary conditions could be used in N3S, such 
as Dirichlet conditions in inlet, Neumann conditions on heating or cooling walls. As an analogy 
with the momentum transfer, walls that are kept at fixed temperature raise many problems in 
turbulent flows, and one more time, instead of applying numerically the continuity of the 
temperature profile at the wall, the modelling of the thermal boundary layer evaluates the heat 
flux from wall to fluid. Many models can be found, the simplest ones, based on Prandtl-Taylor 
analogy, consider that viscous and thermal sublayers are of the same order of magnitude. The 
main disadvantage of these proceedings is that the very small, or, on the opposite, very high 
Prandtl number ( P r )  fluids cannot be taken into account. The formulation that was chosen is the 
one suggested by Arpaci and Larsen.’ 

2.2 The modelling of the thermal boundary layer for Pr 6 1 

plate can be written as 
Considering a steady flow on a plate kept at fixed temperature Tw, the heat flux (qw) from the 

on a dimensionless form: 

The purpose of the model is to describe with precision the diffusivity parameter a:. On a first 
approach, the boundary layer can be divided into two parts, one near the wall dominated by the 
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molecular diffusion, the other by the turbulent diffusion. In the first region, the turbulent terms 
can be neglected and the equivalent diffusivity is reduced to 

On the opposite, in the second region, the heat transfer is mainly due to turbulent diffusion. The 
parameter a, is simply related to the eddy viscosity u, through the turbulent Prandtl number 
concept. The turbulent Prandtl number ( P r , )  is supposed to be constant. The expression of the 
eddy viscosity is given by the mixing length model applied in the core of the boundary layer where 
the logarithmic velocity distribution is valid: 

Those two regions in the boundary layer are not necessarily separated. Considering fluids for 
which the conductivity is high enough, the molecular diffusion contributes to the heat transfer in 
the turbulent region, that is, the conduction sublayer is thicker than the viscous one. For this kind 
of fluids, clearly small Prandtl number fluids, the equations (3) and (4) intersect and the 
temperature distribution for P r  < 1 can be described by 

1 
k P r  Pr 

o .  a, =- T +  =Pry' y + < - = y + .  Pr,  + 

The dimensionless thickness of the conduction layer: yo+ and the integration constant are 
determined by assuming that the equivalent diffusivity and the temperature are continuous. 

2.3. The modelling of the thermal boundary layer for  P r  2 1 

A modelling of the thermal boundary layer that consider only very small Prandtl number fluids 
is not satisfying That would mean that only liquid metal flows can be simulated by the code, and 
that the model cannot be applied to oil ( P r  > loo), water ( P r  z 10) or even gases ( P r  = 0 7  for the 
air). For those fluids, the near-wall thermal sublayer is immersed in the viscous sublayer. This 
suggests to introduce a third intermediate layer between the molecular and the logarithmic 
regions in which the heat transfer is determined not only by conduction but also by turbulent 
diffusion. The mixing length theory cannot be applied crudely because the flow in this part of the 
boundary layer is not fully turbulent. Arpaci and Larsen retain Levitch's suggestion which is 

(6) u,/u = ( Y  + l3 
This formulation is in good agreement with Van Driest6 who developed an expression for the 
mixing length all over the boundary layer. So, in this third layer, the equivalent diffusivity is 

1 a1 + 3  a, '=-+-(y  ) P r  Pr,  

Kader and Yaglom7 expected from experimental results the relation 

(7) 
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These considerations lead to the following equations for Pr 2 1: 

0 < y +  d y :  

2Y+ 1 + $Arc&- - --)I $ + c1 

1 ‘ ty+ 
Pr Pr, K 

a:=-+--  * 

with 

a = P r , l a l  and b = a/Pr 

This set of equations is a bit different from the one derived by Arpaci and Larsen’ who 
neglected the molecular terms not only in the outer part of the boundary layer but also in the 
intermediate zone. So the present formulation is more complex but it is supposed to be more 
accurate in the description of the temperature profiles especially for high Prandtl numbers fluids. 
The determination of the thickness and of the constants require a special attention. They cannot 
be obtained simply by writing the continuity of the temperature and of equivalent diffusivity. 

In a first approach, the expression in the medium region (9b) was supposed to be appropriate to 
represent the heat transfer down to the wall. As a matter of fact, the equation suggests that the 
dimensionless temperature is linear for the smallest values of y+.  This assumption led to a set of 
only two equations one for the outer part of the boundary layer, the second covering the 
intermediate and the near-wall area. But this has never been implemented in the code, the 
comparisons (Figure 1) with the measurements reported in Kader’s review’ indicate that the heat 
flux is under-estimated. 

In the first approach, the higher accuracy of the model did not improve the solution and the 
separation into three different regions seems to be essential. The formulation chosen, retain one 
pure conduction region as written in equations (9). According to dimensional arguments, the 
thickness of the thermal conduction sublayer y: can be determined by equating the molecular 
terms to the turbulent ones: 

1 a1 - = -(y;)3 Pr Pr, 

The continuity of the temperature all over the boundary layer and the continuity of the 
equivalent diffusivity at the boundary between the intermediate and logarithmic layers supply the 
thickness y: of the intermediate zone and the two integration constants c1 and c 2 .  In this 
formulation, the expression of the equivalent diffusivity is not continued at the end of the 
conduction sublayer, but this has no consequence, for Pr 2 1 the conduction layer is of the same 
order of magnitude than the viscous sublayer so very thin in fully turbulent flows and the 
deviation induced on the dimensionless temperature suits the measurements (Figure 1). It must be 
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emphasised that the dimensionless temperature profile depends only on the property of the fluid 
(i.e. the Prandtl number) and on the dimensionless distance to the wall. This model has been 
validated by comparisons with thermal measurements from the literature, one application is 
reported in Reference 3. 

3. GENERAL PRESENTATION OF THE NUMERICAL METHODS 

3.1. Presentation of the problem 

The equations governing the fluid motion in a regular open bounded subset R of RN (N = 2 or 3) 
and over a time interval [0, t ]  are the Navier-Stokes equations for velocity v and pressure p .  For 
some flows of the thermal convection type, we assume that density variations with temperature 
T are small enough to be taken into account with the Boussinesq approximation. The energy 
equation gives the evolution of the temperature T which satisfies a convection diffusion equation. 
It is also possible to take into account more important thermal effects which lead to consider the 
Navier-Stokes problem with varying density p .  This modelling is operational in the code today. 

Industrial flows computed with N3S code are generally turbulent and characterized by very 
high Reynolds numbers. To simulate such complex non-linear flows, we consider the average 
value of physical quantities (velocity, pressure and temperature if necessary) which we calculate 
by means of a model for correlations between fluctuating velocities and between velocity and 
temperature fluctuations. The model used" or k-e model is made up of two equations in which 
k denotes the turbulent kinetic energy and E the turbulent dissipation rate. 

3.2. Boundary conditions 

Boundary conditions depend on the type of boundary which is to be dealt with. At the inlet rin 
of the R fluid domain, forced constrained conditions (Dirichlet) are used for all the variables. At 
the outlet Tout of the R fluid domain, vanishing normal stress for the velocity and vanishing flux 
conditions (homogeneous Neumann) for scalar quantities are used. For walls r, a modelling 
based on the generalization of the analysis of the boundary layer on a flat plate is used. For 
velocity, the normal component satisfies an impermeability condition ( v - n  = 0, where n is the 
normal exterior to the wall). This condition is completed by a friction condition on the tangential 
stress. We furthermore assume that near the wall, there is an equilibrium between turbulent 
production and dissipation which enables to express k and E at the wall. Flux conditions are 
imposed for temperature 8. To sum up, wall boundary conditions on scalar quantities T, k and 
6 are either of Dirichlet type (for k and E )  or of Neumann type (for T) .  

3.3. Time discretization 

Time discretization of scalar equations of convection diffusion as well as the Navier-Stokes 
equations is realized thanks to a fractional step scheme. The convection step is processed by 
a characteristics method and the diffusion or Stokes step thanks to an implicit Euler scheme. 

Convection step. The kth-order characteristics scheme consists in computing an approximation 
at time t"+ ' in [0, t ]  of the total derivative of any scalar quantity C (or the velocity v) with the help 
of a kth-order backward differentiation scheme integrated along the characteristics curve defined 
on the time interval [ t n -k+ l~ tn f l ] .  
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Diffusion or Stokes step. We can now compute C"+' (v"+l  and p"") which denotes an 
approximation at time t"" by solving a diffusion problem (or a Stokes problem for velocity v and 
pressure p )  by a classical kth-order backward differentiation scheme. 

A theoretical analysis of the whole scheme has been done." In N3S code, the 1st-order and 
2nd-order schemes have been implemented. 

3.4. Space discretization and Stokes problem with varying density 

For the generalized Stokes problem, the classical continuity equation becomes: V - p v  = 0. It 
can be theoretically shown that this problem is well posed,'* for two types of formulation 
(velocity-pressure or momentum: Q = pv-pressure formulation). 

The Stokes problem is discretized in space thanks to a finite element method. The unstructured 
meshes use triangles or tetrahedra with a mixed formulation for the velocity and the pressure in 
order to get a well posed Stokes problem. The elements available in the N3S code are Pl-P2 or 
P1-isoP2 elements. In most industrial cases, we use the P1-isoP2 element. The velocity matrix can 
be mass-lumped without diminishing the global spatial precision. This leads to more simple 
calculations, especially in the case of varying density. 

Effectively, the classical discretization of the generalized Stokes problem leads to unsymmetric 
problems which require specific algorithms. Another way consists in adding a fractional time step 
at time t"": it is a predictor corrector type scheme (Chorin algorithm):' 

V denotes the value obtained after the convection step, p" density at time step t", S, = source 
term for v"". p denotes the viscosity of the fluid, pt, the eddy viscosity. 

Velocity dzflusion stage. We obtain an intermediate velocity field v* by solving 

P -(v* - i )  - v - [ ( p  + pt)Vv*] + Vp" = s v  
At 

Pressure continuity stage. It is applied to an increasing value of the pressure and thus, the final 
velocity v"+' satisfies the continuity condition: 

P" -6v + V 6 p  = 0 
At 

- V-(p"Gv) = V*(p"v*) 

where 6p = pn+'  and 6v = v"" - v*. This system is unsymmetric. We introduce the momentum 
associated to 6v, defined by 6Q = p"6v. The system (1  1) can be replaced by 

6Q - + V 6 p  = 0 
At 

The variational formulation of formula (12) leads to a symmetrical matricial system of the 
following type: 

M Q 6 Q  + B'6p = 0 
(13) 

BSQ = - BQ* 

This system is solved by an iterative method of Uzawa type which is classical for elliptic problem 
with constraint type condition. 
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First Sp is calculated by elimination of SQ in (13): 

BMplB'Sp = - BQ* 

and SQ is obtained a posteriori: 

SQ = - MQ'B'Sp (1 5 )  

To avoid to inverse a mass matrix as in (15), a mass-lumping technique is used. This is available 
only for the P1-isoP2 element and the calculation of BM;' is reduced to a multiplication of 
a vector by a diagonal matrix. 

In the case of constant density, this algorithm is naturally available. 

3.5. Projected gradient Uzawa algorithm 

rin,h,  rout,h, rw,h are portions of the boundary of the calculation domain nh associated to rin, 
rout, rw respectively. We consider in this section the Pl-P2 triangle. We introduce discrete spaces: 

Xh = (cp E Co((nh)/V is a 2nd -degree polynomial on each triangle}N 

Mh = ( q  E co((s2h)/q is a 1st degree polynomial on each triangle} n L2(!&) 

vo,h = ( w  E Xh/Va E rin,h, w(a) = 0 and Va E rw,h, w(a)nh = 0} 

where nh is a discrete normal vector.13 
The discretized Stokes problem according to boundary conditions, as defined at Section 3.2 

naturally uses test functions of vo,h. Another way can be to solve the Stokes problem in a larger 
space (xh) than v0.h and apply the boundary conditions thanks to a projection operator Ph from 
Xh onto v0.h. For simplicity reasons, the algorithm is explained in the case where variational 
problem takes into account a constraint condition (as the pressure continuity step defined in 
Section 3.4). In other cases, the algorithm can be adapted easily. 

We introduce the continuous bilinear form ah : Xh x Xh -+ R related to the 'mass' discretized 
operator and b h  : X h  x Mh -+ R related to the 'divergence/gradient' discretized operator : Xh -+ R 
and g h  : Mh -+ R are linear forms. They come from source terms and non-homogeneous Dirichlet 
conditions. The discretized pressure-continuity problem (12) is as follows: 
Find 6 q h  E xh, 6ph E Mh SOlUtiOnS Of 

ah(Ph 6 q h ,  phw) + b h ( P h W ,  SPh) = jh(PhW) v w  E Xh 

bh(PhS%, 4 )  = gh(q), vq E Mh 

s% = dgh 
P h  is symmetric. This leads to the linear system, where A = M, for the pressure continuity system, 
iS associated to ah, B to bh, L to l h  G to g h :  Find SQ E xh, p E Mh solutions of 

PAPSQ + PB'Sp = PL 

BPSQ = G (1 6) 
PSQ = SQ 

The same technique as described in Section 3.4 (formulae (14) and (15)) is used to apply the 
projected gradient Uzawa algorithm to the problem with boundary conditions. The system can 
be easily solved thanks to the symmetry property of matrix P. 
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3.6. Improvement of the code 

a standard 3D industrial application leads to the following results: 
An analysis of CPU time and memory requirement with the previous release of the code on 

(a) One important part of the time is needed for FE calculations and assembling of the different 
matrices (varying in time with the eddy viscosity) and r.h.s.; the main part of the out-of-core 
memory is used for storing all the FE information (containing, for each element and each 
Gauss point, basis function values, gradients, Jacobian matrix, elementary matrix). 

(b) Another part of the CPU time is also used to solve large linear systems Ax = b, where A is 
a well-conditioned mass plus diffusion matrix (diffusion of all the variables such as velocity, 
temperature, k,  E ) ,  or where A is the Laplacian-like preconditioning matrix of the pressure 
system, equal to BBT. We have then concentrated our efforts on optimizing these two 
points. 

(i) Elimination of FE jile and optimization of FE calculation:1° Only triangle in 2-D and 
tetrahedron in 3-D are kept. These elements, named simplicia1 elements, have intresting 
properties which allow us to compute the elementary terms (matrix and r.h.s.) by hand. 
Based on this idea, we have developed a formal pre-processor adapted for all elementary 
matrix and r.h.s. calculations. For one type of matrix or r.h.s., all the elementary terms are 
then computed in a single loop whose length is the total number of elements (which is fully 
vectorized). Another consequence is the elimination of the FE file, and the decreasing of the 
access file time (or swapping time on workstation). The assembling of the elementary 
matrices in the global matrix is done with indirect addressing, so does not vectorize. We 
manage dependencies through FE reordering, and we can then force the vectorization on 
the computer. 

(ii) Optimization ofthe linear system solving:14 As we said, the linear systems are solved using 
an iterative Preconditioned Conjugate Gradient (PCG) algorithm, using matrices stored in 
a classical Symmetrical Compressed Row (SCR) structure. The efficiency of this algorithm 
is crucial (40 per cent of the total CPU time in a turbulent case up to 90 per cent in 
a laminar case, without including the computation of the matrices). Looking from a perfor- 
mance point of view, PCG calculation time is spent in three operations: 

(1) direct solving of a linear system Cz  = r, where C is the preconditioning of A; the standard 
choice is the Incomplete Cholesky decomposition Preconditioning (ICP), which leads to 
the same SCR structure as A with the storage of the array AC(NC0EF); this step takes 
about 50 per cent of PCG CPU time; 

(2) matrix-vector product, about 50 per cent of PCG CPU time; 
(3) BLAS routines used (e.g. dot product, linear combination of vectors, scalar vector product), 

less than 5 per cent of PCG CPU time. 

The main improvement consists in optimizing the matrix-vector product. With the classical 
SCR storage, this step is poorly vectorized the length of the inner loop is half of the bandwidth, 
which depends on the connectivity of the mesh (say 5 in a 2-D case to 20 in a 3-D case with the 
quadratic elements used in N3S). To increase inner loop length, we changed to Jagged Diagonal 
(JD) storage. We only then replace the matrix-vector product by a much better vectorizable one 
(the size of the JD  is the size of the system) plus a permutation, and the results and iterations are 
exactly the same if we do not change anything else. The speed-up obtained for just the 
matrix-vector product turns out to be 12 in 2-D and 6 in 3-D for all the test cases. 
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This part using less CPU time, we can replace the IC preconditioning (very bad vectorized) by 
a more simple one, like a Diagonal Preconditioning (DP). We will need more iterations, but each 
one is less expensive in time. 

4. APPLICATION T O  FLOWS IN HEATED ROOMS 

The comfort notion in habitation is related to fluid dynamic parameters. The temperature 
gradients have to be as small as possible, the air currents indiscernible but strong enough to 
evacuate the pollutants. All these conditions are challenges to the conception of heating appar- 
atus. The flows generated by heating or cooling systems are generally very complex and rise many 
difficulties to be modelled. Numerical methods seem to be useful to study the movements of air in 
habitations. Different complementary approaches are developed by EDF. For the first ones, the 
global models, each room is cut in few areas, the solver evaluates the heat and mass transfer from 
one area to another. Another approach consists in evaluating the ability of thermohydraulic 
codes like N3S to predict the thermal and dynamic characteristics of this kind of flows. Different 
heating systems have been simulated with N3S. The configurations correspond to an experi- 
mental set-up that was elaborated by EDF and the LET* in order to create flows similar to those 
in real habitations. 

4.1. The experimental set-up 

The set-up consists in a square cavity, in which small gaps have been arranged in walls to inject 
hot or cold air. The test cell is 300 mm wide, 1040 mm long and 1040 mm high. In order to 
generate two-dimensional flows,there are two other identical cavities on each side of the test cell. 
The heating systems that have been simulated are the convector,the heating floor and the heating 

X 

1040 mm 

aeration inlet 

convector inlet 
18 mm 

Figure 2. The experimental set-up 

1040 rnm 

* Laboratoire d’Etudes Thermiques de Poitiers 40, avenue du Docteur Pineau 86022 Poitiers cedex. 
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ceiling. For each configuration, an external flow enters the enclosure through an opening (1  8 mm) 
in the top of the left vertical wall and exits from another opening (24 mm) located in the bottom of 
the right vertical wall. The convector is simply represented by an injection of hot air on the left 
end of the floor through a 18 mm gap (Figure 2). The mixed convection in the test cell was studied 
considering isothermal boundary conditions. All the walls are kept at fixed cold temperature, 
generally the same temperature as the aeration except the floor in the heating floor and heating 
ceiling configuration, the thermal source being then, respectively, the low horizontal wall and the 
high horizontal wall. The velocities can be chosen between 0 and 1 m/s. The temperature of the air 
varies between 10 and 40°C for the aeration and between 20 and 70°C for the convector. The 
temperature inside the cavity is evaluated from readings of thermocouples regularly arranged in 
the cell. Velocity measurements are made by Laser-Doppler velocimetry. Prior to the measure- 
ments and to the calculations, a succession of visualizations was made in different configurations. 
These experiments revealed that the Bows are extremely sensitive to the boundary conditions. 
A small alteration on the incoming velocity or temperature can provide two absolutely different 
behaviours. 

4.2. Experimental results 

Isothermal experiments lead to a great vortex all over the cavity area turning clockwise: the jet 
from the aeration gap hits the right wall and falls. The same structure was found with thermal 
sources either in the heating floor or in the convector configuration; however, if there is an 
important temperature difference and small velocities, the buoyancy terms can deviate the 
aeration jet and make it fall along the left wall as it comes into the cavity, generating an 
anticlockwise vortex. Clearly these flows are ruled by inertia or buoyancy effects and mainly two 
parameters arise in this kind of problem: the Reynolds number and the Froude ( F r )  number. 

In the heating floor and heating ceiling configurations, there is only one incoming flow and the 
Froude number (or the Richardson number Ri = 1/Fr2)  is the only criterion. The Froude number 
is defined as 

vu 
Fr = J X T  

where e is the width of the opening, AT the temperature difference between the aeration and the 
heating floor, g the magnitude of gravitational acceleration and p the coefficient of thermal 
expansion. In the case of the heating floor, it was observed that for Fr greater than 3.67 the flow is 
dominated by the inertia effects and turns clockwise and for Fr lower than 1.83 the flow is 
dominated by buoyancy effects and turns in the opposite direction (Figure 3(a)). Ar, intermediate 
flow corresponding to a critical value of the Froude number was obtained for Fr z 3.23, in which 
case the incoming flow is not strong enough to reach the right vertical wall and is deviated in the 
middle of the ceiling (Figure 3(b)). 

In the case of the convector, the thermal source is hot jet that gives rise to perturbations that 
have to be taken into account. The same structures have been noticed, as far as the big vortices are 
concerned, when the flow is fully dominated either by buoyancy or inertia, but they cannot be 
classified in respect of only one criterion. Four cases are detailed in Table I. In the critical flow 
configuration, the cold air from aeration falls along the left wall and get mixed in the middle of the 
cavity with the up-coming hot air from the convector (Figure 3(b)). 

For the heating ceiling as for the other heating systems, two categories of flows have been 
observed according to the Froude number value, but here the flow is a bit more difficult to 
characterize. The critical value of the Froude number is about Frc = 3.67 For higher values, the 
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I 

Figure 3. Flows structure: (a) stable flows dominated by inertia and buoyancy; (b) critical flows, respectively, for the 
convector, for the heating floor and for the heating ceiling 

Table I. The dominating phenomena in the convector configuration for 
various parameters (Fr, and Fr, represent, respectively, the Froude numbers 

in the aeration and convector areas) 

V, T, T, T, Fr, Fr, Flow dominated by 

0.3 0.3 18.5 23.5 18.5 11.6 5.8 Inertia 
0.3 0.3 13.0 63.0 40.0 2.5 2.3 Inertia 
0.18 0.10 11.0 28.0 20.0 2.3 1.9 Buoyancy 
0.15 0.15 13.0 63.0 40.0 1.2 1.1 Inertia 

flow is dominated by inertia, but the pattern is no more a lonely vortex turning clockwise, as 
a matter of fact a smaller anticlockwise vortex appears in the lower left part of cavity. For the flow 
dominated by buoyancy effects ( F r  < 3.67), the aeration jet fall along the left wall, and a stratifica- 
tion appears in right part of cavity. 
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4.3. Calculations 

All the flows generated are turbulent. Numerically, the turbulence effects are represented with 
the k-s model and the heat transfer on walls is simulated by the modelling presented above. It can 
be expected that a pure natural convection problem requires a low-Reynolds model, but in each 
configuration studied here, the velocities of the air injected seem to be high enough to consider 

Figure 4. Grids used (a) in the heating floor and in the heating ceiling configuration; (b) in the convector configuration 
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that the heat transfer is due to mixed convection. In order to take into account the buoyancy 
effect, the Navier-Stokes equations are coupled to the energy equation through the Boussinesq 
approximation. One configuration of each heating apparatus has been computed. 

The data for the heating floor are V, = 0.57 m/s, Ta = T, = 15"C, Tf = 35°C; this leads to 
Fr = 5.19. Actually, the flow generated experimentally is very stable, and the clockwise vortex 
occupies the whole cavity. As a result, the temperature field is very homogeneous between 19 and 
20°C in the middle of the cell. For the numerical study, the grid used is made of 687 elements and 
1526 nodes; it is reported in Figure 4. The elements are triangle P1-isoP2. The time step applied 
for this calculation is dt = 0.01 s. 20 000 time steps have been computed during 1 h CPU time on 
Cray YMP (that corresponds to 0.1 s for 1000 nodes per time step). Velocities and turbulent 
parameters fields converge in less than 5000 iterations but the convergence of the temperature 
field is harder to reach, specially in the centre of the cell where all the velocities are very low. 

The data for the heating ceiling are V, = 0.57 m/s, T, = T, = 15"C, & = 35°C; this leads to 
Fr  = 5.19. A clockwise vortex occupies the upper half of cavity, and a anticlockwise the other 
part. This flow is less stable than the last one. Furthermore, there are no measurements all over 
the cavity, they have been made along two profiles only. As a result, the temperature field is very 
homogeneous between 19 and 19.5"C in the middle of the cell. For the numerical study, the grid 
used is the same as the heating floor case (Figure 4). The elements are triangle P1-isoP2. The time 
step applied for this calculation is dt = 0.01 s. 20000 time steps have been computed during 1 h 
CPU time on Cray YMP (that corresponds to 0.1 s for 1000 nodes per time step). Velocities and 
turbulent parameters fields converge in less than 5000 iterations but the convergence of the 
temperature field is harder to reach, as in heating floor case. 

The data for the convector are V, = 0.6 m/s, V,  = 0.2 m/s, T, = T, = 20"C, T, = 40°C. There is 
actually a big vortex occupying most of the cell, but there is also a very small one turning in the 
opposite direction just under the aeration opening. In this case, both buoyancy and inertia act on 
the flow structure, which corresponds to a critical flow. Near the aeration gap, the buoyancy 
effects are dominating and the cold air falls along the left wall. Then, lower, this air is submitted to 
the thrust of the up-coming hot jet and goes up again, creating the smaller vortex and deviating 
the hot jet to the right. Apart from this secondary vortex region and the regions close to the walls, 
the temperature in the main part of the cavity is one more time very homogeneous between 25 
and 26°C. For the numerical study, a different mesh was used, made of 881 elements (triangle 
P1-isoP2) and 1952 nodes (Figure 4). The time step applied for this calculation is dt = 0.05 s. 6000 
time steps have been computed. The first iterations were computed neglecting the buoyancy terms 
in order to create a proper initial state before taking into account the buoyancy terms through the 
Boussinesq approximation. 

4.4. Numerical results 

In the heating floor case, the numerical results are in good agreement with the experimentation. 
N3S simulates a big vortex occupying all the cavity. The calculated velocities near the walls are 
a bit more important than the measured ones as can be seen on velocities distributions. (Figure 5). 
In the middle of the cell the temperature is too small for about 0.5"C compared to the 
measurements. Near the walls, the same deviation is noticed (Figure 6). 

The temperature still progresses after 6000 time steps although the velocity field is absolutely 
converged. 

The last 14000 iterations raised the temperature in the middle of the cell by 0.5"C only, without 
any consequence on the dynamic parameters. 
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Figure 5. Vertical (UY) and horizontal (UX) velocity profiles in the heating floor configuration: (0) measurements; 
(-+-) calculation 

For the heating ceiling configuration, the lack of experimental data prevents us from doing 
significant comparisons. N3S simulates two vortex, one turning clockwise in the upper half part 
of cavity and an anticlockwise vortex in the lower part. As in the heating floor case, the velocity 
field and the temperature gradients are well described (Figures 7 and 8). The temperature is 
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Figure 6. Temperature profiles in the heating floor configuration: (0) measurements; (-+-) calculation 

simulated with slightly less accuracy with a deviation of 13°C in the middle of the room and near 
the walls; This typical configuration is more unstable, so really difficult to simulate. The time steps 
for converence are similar to the heating floor case. 

The simulation of the convector gave rise to a lonely vortex turning clockwise and occupying 
all the cavity. According to the numerical results, the buoyancy effects are not strong enough to 
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Figure 7. Vertical (UY) and horizontal (UX) velocity profiles in the heating ceiling configuration: (0) measurements; 
(-+-) calculation 

Y=O, 52 m 
T ( 'C) 
20 

19 

18 

17 

16 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

x (m) 

Figure 8. Temperature profiles in the heating ceiling 

Y (  
1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

X=0,52m 
:m) 

15 16 17 18 19 20 21 22 

T CC) 

configuration: (0) measurements; (-+-) calculation 

generate the secondary vortex under the aeration opening. The cold air entering the cell keeps an 
horizontal direction. This inaccuracy generates many other discrepancies that appear on the 
velocities profiles (Figure 9). The hot jet is not slowed down any more by the down-coming cold 
air. N3S simulates the jet all along the left wall although the experiment founds negative velocities 
in the top of this wall. Entering the cavity, the cold air is mixed to the vortex; this generates all 
along the edges of the cell too large velocities. 

The temperature found by N3S in the core of the cavity is higher than the ones revealed by the 
measurements by a bit less than 1°C (Figure 10). 

These three calculations reveal that the numerical solution does not detect the transition. 
However, in a stable configuration, the calculations provide very satisfying results although some 
discrepancies could be observed near the walls. This phenomenon appeared for the three 
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Figure 9. Vertical (UY) and horizontal (UX) velocity profiles in the convector configuration: (0) measurements; 
calculation 

simulations so the code seems to underestimate the shear stress. This can be related to the fact 
that for this kind of flows, the viscous sublayer might be very thick, and the boundary layer 
modelling was designed for fully turbulent flows where the molecular viscosity interferes on very 
small length scales. 
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Figure 10. Temperature profiles in the convector configuration: (El) measurements; 

5. APPLICATION TO FLOWS IN COOLED ROOMS 

calculation 

This study presents a typical configuration of flow of mixed convection characterizing an 
air-conditioner encountered in habitations. As a matter of fact, the aerothermal phenomena in 
a cooled and ventilated room is very complex, and the actual cooling systems raise some 
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problems of comfort and efficiency. Thermohydraulic codes like N3S are able to constitute a solid 
base for the conception of such systems and to improve the understanding of aerothermal 
phenomena in buildings. Consequently, a validation of N3S is necessary to confirm the accuracy 
of simulation compared to the experimental data. The experimental measurements have been 
performed by the LET. 

5.1. The experimental set-up 

The set-up consists in a square cavity, in which small gaps have been arranged in walls to inject 
and extract air (Figure 11). The size of the cell is similar to the previous experiments. In a cooled 

1040 mm 

1 

cold air inlet outlet 
23 mm 23 mm 

Figure 11. Experimental set-up of an air-conditioner 

Figure 12. Grid used in the air-conditioner configuration 
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room, the intake of cold air is located at the corner of the left wall and the floor, through a gap of 
23 mm. The extract of air is located near the entrance through a gap of 23 mm. Between the two 
gaps laid a vertical wall (4mm width and 10cm height). The air-conditioner thus is simply 
represented by an injection of cold air: = 17°C. All the walls are kept at fixed temperature: 
T, = 26.7"C. The inlet velocity is chosen on an average at Uj = 0.73 m/s. This leads to Fr = 8.5. 
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Figure 13. Vertical (UY) and horizontal (UX) velocity profiles in the air-conditioner configuration: (0) measurements; 
(-+-) calculation 
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5.2. Experimental results 

A plume of cold air is released from the inlet. The cold air makes its way to the ceiling and falls 
down in the left part of cavity, generating a clockwise vortex. In the right part of cell, the 
buoyancy and viscous terms induce an anticlockwise vortex. As in heating systems, the Froude 
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Figure 14. Temperature profiles in the air-conditioner configuration: (fl) measurements; (-+-) calculation 
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number is a determinant parameter for the aerothermal flow. The height of the plume depends 
only on the Froude number. 

5.3. Calculations 

The turbulent effects are represented with the standard k--E model, and the buoyancy effects are 
taken into account with a variable density. The numerical data are similar to the experimental 
ones: 

For the numerical study, the grid used is made of 1557 elements and 3342 nodes; it is reported 
on Figure 12. The elements are triangle P1-is0 P2. The requested computation time is around 
3000 s representing 5000 iterations of 0.1 s of real time, that is to say 0.18 s for lo00 nodes and by 
time step. 

The permanent state is obtained by using a transient integration. The convergence period thus 
corresponds to the data spreading over the whole field. Temperature and velocities parameters 
converge in less than 4000 iterations. 

= 17"C, T,,, = 26.7"C and Uj = 0.73 m/s. 

5.4. Numerical results 

In terms of accuracy, the velocity field is well described on the whole cavity. N3S simulates 
a plume on the left part of the cell a little lower and wider than the experimental one. Some other 
simulations have confirmed that the velocity profile of the injected air has little consequence on 
the plume size. On the right part, the anticlockwise vortex, is in good agreement with the 
experimentation. The temperature field is simulated with slightly less accuracy: An under- 
assessment of 1.5"C have been recorded in the centre of cavity. 

N3S matches the velocity field analysis particularly well (Figure 13), but matches to a lesser 
degree that of thermal exchanges (Figure 14). This conclusion confirms the first results from the 
simulation of aerothermal phenomena in a heated and ventilated room. 

6. CONCLUSION 

Flows generated by heating or cooling apparatus have been simulated with the finite element 
code N3S. The calculations presented here concern the simulation of aerothermal phenomena in 
a heated or a cooled ventilated room. On a qualitative point of view the numerical results are in 
good agreement with the measurements although some differences could be pointed out in 
unstable configurations. The wall law model for the thermal boundary layer presented seems to 
be able to simulate the heat transfer in mixed convection flows in enclosures, but clearly, in order 
to compute pure natural convection problems, a low-Reynolds model is required as the temper- 
ature profile is not logarithmic in such cases. Considering the applications presented here, it can 
be expected that this modelling can provide satisfactory informations for any industrial applica- 
tion in three dimensions. Along the same line, some more works are under way, it consists in 
implementing in the code a second moment closure, more realistic than the k--E model to 
represent the turbulent effects, the development of adaptative meshing procedures may also 
improve the accuracy of the solution. 

NOTATION 

a, a,, a,' = (a  + a,)/o molecular, turbulent and equivalent diffusivity 
C ,  specific heat at constant pressure 
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~In 

qw 
T i  = ( T  - Tw)/T* 

mixing length 
heat flux from wall to fluid 
dimensionless temperature 
friction temperature 
air temperatures from aeration and from convector 
temperature of the floor and of the other walls 
friction velocity 
velocity of the air from aeration and convector 
dimensionless distance to the wall 
kinetic molecular and turbulent viscosity 
density 
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